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Rodlike polyelectrolyte solutions: Effect of the many-body Coulomb attraction of similarly charged
molecules favoring weak nematic ordering at very small polymer concentration
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The correlation free energy of the many-body Coulomb interactions in the solution of rodlike polyelectro-
lytes with counterions is calculated. For this purpose a theory of the Debygkehtype, based on the density
functional approach, is developed. We have shown that for all the analyzed regimes electrostatic interactions of
similarly charged rods are attractive independent of their mutual orientation. Coexistence of weakly and highly
ordered nematic phases at intermediate degrees of ionization of the molecules is predicted. It is shown that the
electrostatic attractive forces favor liquid-crystalline ordering and stabilize a weakly ordered nematic phase at
very small polymer concentrations. In other words, isotropic solutions of charged rods are in many cases
intrinsically unstable with respect to orientational ordering.

DOI: 10.1103/PhysRevE.66.011802 PACS nunider61.25.Hq, 61.30.Vx, 82.35.Rs

I. INTRODUCTION structed from the Debye-Hiel potential, was proposed in
Ref. [20]. Here the effective potential energy between two
The basic principle, which underlies liquid-crystalline or- segments of different polyelectrolyte rods was calculated in
dering in solutions of neutral rodlike molecules, was ex-the Maier-Saupe approximati¢@2]. This energy was shown
pounded by Onsager more than half a century[dgoSince  to be also repulsive and anisotropic, favoring perpendicular
that time deep understanding of the liquid-crystalline phas@rientation between the rods.
in the solutions of rodlike polymef®@—4] and of molecules A recent attempt to account for the effect of the many-
with various flexibility mechanisms[5—8 has been body.(.:orrelanons of charg_ed rods on the isotropic-nematic
achieved. Studies of nematic ordering in the solutions off@nsition was undertaken in R¢d7]. The model of weakly
rigid-rod polyelectrolytegincluding biological objects, such interacting rods immersed in oppositely charged nonfluctuat-

as DNA, tobacco mosaic viruses, ethave been started ing medium was developed. The interaction potential be-

more than two decades ag@—20. However, in contrast to tween the rods was chosen in the Debyeskal form. _T_he
. X ; . _resulting correlation free energy was found to be positive and
neutral solutions, in the field of polyelectrolytes there is a

. . ._..~ “reducible to the virial electrostatic energy under certain con-
very wide spectrum of theoretical models and predlct|onsd-ti

. . S.
Most of the approaches were based on the consideration 01! The goal of this paper is to develop the consistent theory
only pairwise Coulomb interactions of the chains in the sec

@ LTS , ‘of liquid-crystalline ordering in solutions of rodlike polyelec-
ond virial approximation[10,11,13,1& It is well known  iytes which properly considers the many-body Coulomb
[21], that the integrals in the two-ion term in the secondinteractions of charged grougsoth macro and counterions
virial expansion for the unscreened interactions are divergg well as the effect of the translational motion of counteri-
gent. Therefore, this approximation can be applicable if abns. We will consider the polyelectrolyte regime of sait-
least two conditions are assumé:two macroions interact free solution with freely floating monovalentounterions at
via the screened Debye-kkel potential[10,11,13,18 and  the high temperaturéor high dielectric constapti.e., the
(if) the screening radiughe Debye radius of low-molecular counterion condensation due to the Manning mechanism
ions) is smaller than the distance between the macroions. Thg23,24] and ion pair formatioi25—27 will not be taken into
latter condition can be achieved at high salt concentrationaccount in the present theory. The main difference of our
(compared to the concentration of counterjofi,18. The  model is thatunscreenedCoulomb interactions among the
choice of the virial approach excludes correlation attractiormacro and counterions will be considered as a starting point
of low-molecular ions from consideration and postulatesof the theory. It means that this approximation cannot be
electrostatic repulsion between two similarly charged macroreduced to the virial expansidas in the consideration with
ions. One of the main predictions of the virial theories is thethe screened potentigl7]). Assuming that charge fluctua-
increase of the net second virial coefficient due to electrotions in the solution are small, we will elaborate a Debye-
static interactions. This can result in the narrowing of theHuckel-like theory on the basis of the Gaussian approxima-
phase separation region and the second orientational trangien for the density functional. Charge fluctuations of both
tion to a highly ordered nematic phaskd,1§. rods and counterions will be taken into account. The general
Another model, based on the bare potential energy corexpression for the electrostatic correlation energy of the so-
lution with the arbitrary orientational distribution function of
rods will be derived via integration of the statistical weight
* Author to whom correspondence should be addressed. Electroniaver the density fluctuations. The explicit forms of this en-
address: igor@polly.phys.msu.su ergy will be obtained for the two limiting states of the solu-
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tion: the isotropic(disorderedl and completely orderegpar- 1 o

allel orientation of the moleculgsstates. Various phase Zstr(lﬂ):mf H dR;dn;f(u,n;)

diagrams for liquid-crystalline ordering will be constructed. ©Joi=t
The most important predictions of our model can be sum- N Sin(q- AL/2)

marized as follows. % 5( z/fq—ZmE q—e Xp(—iq-R))
(1) The many-body Coulomb interactions of similarly i=1 -n;L

charged rods arattractiveindependently of the mutual ori-

entation of rods. This effect is valid for semidilute and dilute 2308 4

regimes. +(2m)%p5(q) |. 0)
(2) Electrostatic attraction favors liquid-crystalline order-

ing. It stabilizes a weakly ordered nematic phase at veryntroducing the conjugate fielg, the partition function(4)

small polymer concentrations. Coexistence of weakly andan be presented as

highly ordered nematic phases is possible.
(3) Translational motion of counterions narrows the phase o

separation region of the coexisting isotropic and ordered Zstr(lﬂ):mf [T dridnif(a,ny)

nematic phases. it

[ dg
Il. ELECTROSTATIC INTERACTIONS IN THE Xf D‘Pxexf{'fwﬁp—q%_
SOLUTIONS OF RODLIKE MOLECULES
N . ~
Let us consider a solution of charged rodlike molecules Xf dq sin(q-niL/2)
and their low-molecular mobile counterions. Let us denote as (2m)3 ?-q =] q- ﬁi|_

L and m the length and the number of monomer units for

each molecule, respectively=am wherea is linear size of ) 5

monomer units. Monomer unit density in a solutiorN\bfods Xexp(—iq-R)—(2m)°pé(q) | (, ®)
can be written as

whereDo=1l,d¢ is the product of differentials. Expanding

Lz d the exponent in Eq5) into the series in powers of the small

p(X)= mE f L/ZT (x—nisi—Ry), @) density fluctuationsp,— (27)°p8(q), up to square terms
and integrating over the coordinat® and the orientation

wherex is the current spatial coordinats; and ﬁi are the Vectorsn;, one can obtain

current longitudinal length and the unit vector directed along N
the axis ofi™ cylinder, r tivelyR; is th rdinate of _V i dq
e axis ofi™ cylinder, respectivelyR; is the coordinate o Zo(0)= — | Doexpl i Yo
its center. The total number of monomer units in the system o N! (2m)3"°
can be found by integration gf(x) over the whole volume
of the systemy,
- A q(pq(p q PP

J d3xp(x)=mN. (2
v

. n rf
) _f dnf 4SI (g- nL/2). ©

Fourier component for the densit}) takes the form @ 2L

N Reconstructing exponent in E() using Gaussian approxi-
J'L/Z ds, mation, 1— p?~exp( ¢?), we find

pq=m 3 —exd —iq-(njs;+R;)]

L2

1 dq )
N Zg () =const—ex zpzp
ZZmEM exp(—iq-R), 3 ‘ 7\'_ p( 2mp) (a7

=1 g-nL )

i NN after integration over the fielgp. Here the constant const is
where q is the wave vector. Let us denote a(su,ni)Aan independent of the density fluctuations

orientational distribution function of the molecules. Heres Let us consider the case of monovalent charged groups of
unit vector of preferential orientation of the molecule-  the rods and their mobile counteriofossessing elementary
rectoj and the functionf is normalized as follows: charges+e and —e, respectively without salt: counterions
fdn;f(U,n;)=1. The contribution to the partition function of are the only mobile low-molecular ions in the solution. Let
the solution coming from the density fluctuations of theus denote ad\ the distance between charged groups of the
monomer units of rodﬁzq:pq—(ZTr)?’p&(q) with respectto  rod; thenr=a/A, 0<7r<1, is the fraction of the charged
the average valup=mN/V can be written as follows: groups and their density is defined as(x). Counterions
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provide macroscopic electrical neutrality of the solution andThis expression diverges gt—~ because self-energies of
their density c(x) is subjected to the conditiort,—q  counterions and rodlike molecules contribute A&, ac-

= [dxc(x) = 7/ dxp(X) = Tpg=o- cording to the form of the Coulomb energy, E8). There-
Local violation of electrical neutrality in the solution con- fore, to derive the electrostatic energy of interactions of the
tributes to the Coulomb energy as macromolecules with each other and the counterions we
have to subtract the corresponding self-energies from Eq.
SFcoul(,é) | dg (g &) (Th_q—€_¢) (12). The total self-energy of the rodlike moleculasg) is
kB—T_ —J (2m)° e , the sum of the energies of each molecule,
)

where the parameteér=4lg is proportional to the Bjerrum e'_kBTE dnif(u.n)

lengthlg=e?/(ekgT); € is the dielectric constant of the so- R R
lution; and ¢, is the Fourier component of the density fluc- | dg rPvg(n)v_q(n)
tuations of c:ountenonsq Cq— (2m)%8(q) 7p, £q-0=0. _j (2m)3 9 '

To calculate the contribution of electrostatic interactions
to the free energy of the solution we follow the Debye-

sin(qg- n L/2)

I—_|Ucke| theory{21] and consider_small dens_ity fluctuations in vg(n)=2m expg —iq-Ry), (13
“ideal gas” of rod molecules with counterions. Free energy q- niL
functional of such a system can be written as a sum of three
terms Wherevq(ni) is the Fourier component of the density i&f
molecule[see Eq.(3), wherepqzziuq(ni)]. The result of
F(llfyf):kBTf dxc(x)In[c(x)]—kgT In Zgy () calculations in Eq(13) can be written as
+ SFcoul(#6), © L il [P 14
2 et

where the first term is the energy of translational motion of

counterions, the second term is the structural contribution o€ orrespondingly, the self-energy Nimr counterions has the

rodlike molecules, see E§7), and the third term is the Cou- form

lomb energy, Eq(8). Expansion of the first term in E@9)

into the series in powers of the varialdleip to the quadratic Nm7l dg 1

term enables us to write E) in the following form: AFSi=kgT 5 J W ?
a

(15

F(y,&)=kgTrmNIn +kgTNIn(p/m)+ SF (i, €), . . . .
(4 &)=keT7 (7p) + ks (p/m) (.9 Correlation electrostatic energy of fluctuating charges, i.e.,

the energy of rods-rods, rods-counterions, and counterions-

lej e R 94 Y- 9.4 |Tz,/; £ 2| counterions many-body Coulomb interactions, takes the form
kgT (2m)?3| 7P mptq a =
(10) AFcorr:AFeI_AF(Sa{_AFgf
The first two terms irF correspond to the energies of trans- " q 1+mrt,
lational motion of counterions and rod molecules, respec- _kBTE 273 In} 1+ 7pl 9
tively, in spatially homogeneous solution whi#& describes
small density fluctuations. The contribution of fluctuating 1+mrt,
charges to the total free energy of the solutibR,; can be —7pl > (16)
found following a standard way: q
SF (14, &) To check the validity of our approach let us reproduce
AFg=—kgT InwaDg p{ ] first the classical result of the Debye-tkel theory for ideal
plasma with pointlike positive and negative charges having

SF(1,) valencyz, = tm andz,=1, respectively. For this purpose we
In f DyDée p(— T ,0)) (11 have to consider the limit— 0 in Eq. (6) leading tot,=1.
B For this limit the integral16) is calculated exactly and has

where DyDe=I1dyd&, is a product of differentials. Cal- the form

culation of Gaussian integrals in E@.1) is done in Appen- AE
dix A. The result is \;orr

- k—[I Tp(1+ 7'm)]3/2

mth

\% dqg 1
AF o =kgT= J(Zw)?’ln 1+ 7pl . (12 = —KkgT——| —=
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p sir(q-uL/2
C1=. C2=pT, 17 tq=4#. (20)
(q-uL)?
which coincides with the classical res{@1]. The calculation of the correlation free energy with this func-

The opposite limit of rods with well defined shape can beiq a5 well as the corresponding chemical potential and the

obtained at. — <. We will analyze two important case8)  5smotic pressure is presented in Appendix C. The pressure
disordered state of the solution when all orientations of thetakes the form

molecules are equally probable afi completely ordered

state when all molecules are oriented in parallel to each 172p (Ip7)%?
APorg=— 5—— . 21
other. Pord™~ =~ g2~ oa- (21)
A. Disordered state This contribution is also negative for all analyzed re-

ngimes. This means that independently of the molecule orien-
tation many-body charge interactions stimulate attraction of
similarly charged molecules. The free energy of the com-
pletely ordered state, EQC8), is smaller than the free en-
ergy of the disordered state, E@®10): the larger the argu-

_ (18  ment of logarithm(length of rod$, the larger the difference
between the energies. If we assume that the free energy as a
function of molecular orientation is monotonous, we can

The calculation of the free enerdjt6) with the structural  conclude that Coulomb attractidavors orderingof the mol-

function (18) as well as the corresponding contributions toecules.

the osmotic pressure and the chemical potential of the solu- The physical reason of Coulomb attraction of the mol-

tion is presented in Appendix Bsee Egqs(B9), (B10)]. In-  ecules in the completely ordered state at small polymer con-

terpolation form of the contribution of Coulomb interactions centrations is the following. A system of infinitely long par-

In disordered state of the solution the distribution functio
f(u,n) in Eq. (6) is constant, namely(u,n)=1/(4), thus
the structural function takes the form

t

1 JqL/Z g Sir?(x)

= X
9 qL)-que x2

to the osmotic pressure can be written as allel rods has cylindrical symmetry and symmetry of electric
5 3 field of each individual molecule is close to cylindrical one if
_ I%p _“PT) their volume fractiong is small, <1. Then the total Cou-
Apgis~— 75— . (19 : X
12ma 24w lomb energy ofN rods is approximately equal to the sum of

energies of individual molecules. It is well known that the
One can see that electrostatic interactions give a negativénergy of a cylinder logarithmically diverges and depends on
contribution to the osmotic pressure of the solution for allthe outer radiu®, which is determined by the volume frac-
analyzed regimegsee Egs.(B7), (B8)]. It means that the tion ¢, R=a/ 42 Neglecting charge fluctuations, the Cou-
many-body Coulomb interaction of fluctuating chargesjomb energy in main approximatiofwith respect to small
favors the attraction of the moleculeSpg;s decreases with  yolume fractiong) takes the form
the increase of polymer concentration.

Let us estimate the range of applicability of the derived Uy (emr)?
expression. The main limitation of our approach is the as- keT ﬁ'n(R/a):Nm%ln(ll‘ﬁ)- (22)
sumption of small density fluctuations: electrostatic interac-
tions only weakly perturb the homogeneous densities of rod¥he calculation of the osmotic pressure with this formula
and counterions. It means that the correlation free energgives exactly the same expression as the first term in Eg.
should be smaller than the energy of translational motion of21). Therefore, the driving force of Coulomb attraction at

2

rods and counterions which results in small concentrations is the tendency to reduce the energy of
the cylinder by decreasing the volume fraction. Note that the
Ir/a<1 atlpa®/r<1 (mr>1), alternative decrease of the Coulomb energy of the cylinder
via the Manning mechanism of counterion condensation
pI®<1 atlpa’/7>1 (mr>1), [23,24 becomes possible only &t-a.
7(m7)%pl®<1 at mr<1. Ill. FREE ENERGIES OF ISOTROPIC

. . . AND NEMATIC PHASES
In the considered polyelectrolyte regimkesa, these in-

equalities are always validr&l). To describe nonCoulomb interactions at liquid-crystalline
ordering in the solution of rodlike molecules let us use the
B. Completely ordered state Onsager approachil] with the orientational distribution

) function
In the completely ordered state of the solution, when all

molecules are oriented in parallel to each other, the distribu- . a A o
tion function f(u,n) in Eq. (6) has the formf(u,n)=&(n fu,n)= 47 sinh( ) costiau-n), j dnf(u,n)=1,
—u) and (23
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where « is the variation parameter,<Oa<»; a=0 anda ty O=tq+ oty 27
>0 correspond to isotropi@isorderefland nematic phases
of the solution, respectively. Complete nematic ordering is 15 [ (0-g)2 1 singL)| t

. . - A A A _ _ _q
attained in the limitoe— whenf(u,n)— &(u—n). The On- &q_7 ( 7 l) q2L2< qL ) 6

sager approach, developed initially for neutral rodlike mol-
ecules, is based on the consideration of the two contributions
to the free energy characterizing different phases: entropi
losses of rods because of their orientation and pairwise e
cluded volume repulsion of the molecules which is
orientation-dependent,

heret, is the structural function of the disordered state, Eq.
18). Expan5|on of the correlation free ener@6) with the
structural function of weakly ordered moleculeg, , into
the series in powers aft, results in

]:wo -7:d|5+ OF, (28)

fOnsagega)=ﬂf dRf (0, M) IN[47F(0,7)]
m J‘ f q2 (|pm 2 4&2
a [q2+|p7'(1+m7't )]

PP [ n m A 3
+Ff dh,dn,f(G,A) F(0,7)B(y) 2m)
m
For the most interesting case of the large number of charged
P arcsiftani( a) | units on the chainmr>1, we can use asymptotic forms of
m Infa coth(a)] =1+ sinh «) the functionst, and oty at qL>1 (see Appendix B In this
limit the integral in Eq.(28) takes the form
I,(2a)
T sre 29
247w a T
(24)

Similarly, calculation of the orientational entropy of rod mol-

whereB(y) =2L?asin(y) is the second virial coefficient of ecyleg[first term in Eq.(24)] with distribution function(26)
rods making an angle with respect to each othek; is the gives

Bessel function.

To describe Coulomb interactions of the molecules in the 50
nematic phase, where the order parameter 6Forient= 50 5" (30
:f dnf (A 0)3(ﬁ~ u)?-1 . 3 [acosha) Neglecting the contribution of excluded volume repulsion of
' 2 o2\ sinh«a) rods at small polymer concentrations, which is proportional

(25 to p?, we can write the excess energy of the weakly ordered
state in the following form:
can be less than unitfparametere has some finite valyg

we have to calculate the correlation free energy, @), 5 1 12 5
with the orientational distribution function, Eq23). 0Ft0t= 0F orient™ 0= m 127a S (32)
A. Instability of disordered state toward nematic ordering Therefore, if the fraction of charged groups of rod molecules
at small polymer concentrations T exceeds some certain valuer 12wal/(Im), the isotropic

state of the solution becomes unstable even at very small
olymer concentrations: the longer the polymer chain, the
maller the threshold value of

In this section we will show that already at small polymer
concentrations the isotropic phase becomes unstable with r
spect to weak orientation of the molecules. For this purpose
let us calculate the spinodal of isotropic-nematic ordering. It
can be done using general approuidependently of par-
ticular choice of the trial function, Eq23)] which is based The calculation of the correlation free energy of Coulomb
on the expansion of the distribution functidgu,n) of the interactions for arbitrary values of the order param&és)

weakly ordered state into the series of Legendre polynomican be given only numerically. To overcome computational
als, difficulties and to get qualitatively correct results we use

simple interpolation form assuming monotonous dependence
of the correlation free energy am,

B. Approximation for anisotropic Coulomb free energy

(0.~ | 1+ 23 pyz-1 S<1
(u,n)~E +7[ (u-n)y*=1]+ .../, <1.

o
]:ord . (32)

1
(26) Feorl@)= 7 Faist 77,

We will consider in Eq(26) the first two terms of the series
due to weak orientation of the molecules. Then the structurdk decreases fron¥#ys at =0 up to the valueF,4 at «
function can be presented in the following form: =0,
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10 , i . . 015 r T T T 10
— (a) = (b) w=1 ©
08 L ast0 " phase o8f\ |L/a=5
. a= phasg L/ a =100 separation ’ a nematic nematic
separation 010 hase | phase If
086 08 prese i
T ; T T
o nematic phase | nematic | nematic nematic 04l
- hase If 005 hase | hase Il - . 1 7
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i ) phase 4~
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FIG. 1. Phase diagrams of the solution of the rigid-rod polyelectrolyte in variables: polymer volume fréctiad the fraction of
charged groups of the rodsfor different values of the aspect ratio of the moleculel&g=10 (a), L/a=100 (b), andL/a=5 (c); w=1.

The resulting free energies of the isotropi€ ) and nem-  giving the binodals for isotropic/nematicisotropic/nematic

atic (F,) phases of the solution have the form I, and nematid/nematicll phases, respectively.
Phase diagrams of the solution in variables: polymer vol-
Fi=Feorr(0) + Fonsagek0) + Fir ume fraction¢=pa® and the fraction of charged groups of
the rod r are presented in Fig. 1 at various values of aspect
Fn=Feor(@)+ Fonsagek @) + Fi; , (33 ratio of rodlike moleculel./a=m. Figure 1 depicts the dia-

gram atL/a=10. In accordance with the analysis of the
spinodal of the order-disorder transition, the isotropic phase
remains stable only below a certain value 0fAbove this
value weakly ordered nematic phakeappears already at
where 7y, is the energy of the translational motion of coun- very small polymer concentrations. The width of the phase
terions and rods. The chemical potentialg () and osmotic  separation region between these phases is very small and is
pressurest; ) of various phases of the solution are derivednot distinguishable at the length scale of the diagram. In
following a standard way: contrast, the width of the phase separation region between
the isotropic and highly ordered nematic phékés signifi-
:‘9}71“ o= zi(}_i,n (34) cant. It narrows with the increase effrom the maximum
ap =P ap\ p value at7=0 corresponding to neutral rod chains. Such be-
havior is caused by the increase of a number of counterions
Thus, the system described by the free ener@@s fa-  with 7: the contribution of translational motion of counteri-
vors liquid-crystalline ordering due to excluded volume re-ons, which is proportional te, dominates over the Coulomb
pUlSion of the molecules and their Coulomb attraction Whlleterm ~7-2 at small values ofr. Phase Separation is a|WayS
losses in orientational entropy of the molecules COUnteraCéccompanied by entropy losses of those CounterionS, which
this ordering. are localized in denser phase to compensate its macroscopic
charge. Therefore, the larger the number of counterions, the
IV. RESULTS AND DISCUSSIONS smaller should be the concentration jump at the phase sepa-
ration.
The analysis of the free ener¢§3) of nematic phase asa  coexistence of two nematic phases at certain intermediate
function of the parameter shows that at certain conditions 5jyes of the degree of ionization of rod molecuteis the
this function may reveal two minima at finite valuesa@flt  resylt of two stabilizing factors: weakly ordered nematic
means that two nematic phasdsgnd|l) differing in the  phasd and highly ordered nematic phaldeare stabilized by
value of the order parameter can be stable. To construct th€gpylomb and excluded volume interactions, respectively.
phase diagram of such a solution we have to solve the set {hen these two kinds of interactions become comparable

pa’

m

p
Fu=1p In(rpad)+ mln

Min

the following equations: (with the increase of) the difference between the nematic
phases vanishes at the critical point.
#i(po)=pn(p1)s  1i(po) = n(p2), The influence of the aspect ratio of rodlike molecules on
mi(po)=mn(p1),  mi(po)=mn(p2), phase behavior of the solution is demonstrated in Figfs. 1
dF(p1) AFn(p2) and 1c). These figures correspond tda=100 andL/a
leo' TZ:O' =5, respectively. The increase of the length of the molecules

leads to expansion of the stability region of the nematic
(P = fan(pa),s phase in both directions: its_boundaries are shifted toward
7o(p1)=Tm(py) smaller polymer volume fractiong (as for the case of neu-
(9;-‘ (1 ) n 2(9,]-‘( ) (35  tral solutiong and smaller values of [compare Figs. (B)
ntP1 -0 ntP2 -0 and Xb)]. Formation of weakly ordered nematic phdsat
day " day ’ smaller values of (weaker Coulomb attractionFig. 1(b), is
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20 T T T T tion of the order parameter can be continuous, starting from
a very small value. In Fig. 3 the order parame®eEq. (25),
16 1=0.5 nematic is plotted as a function of polymer volume fractiof at
L/ a=10 hase Il | different fractions of charged groupsand fixed values of
12 nematic p i the aspect ratio and of parametgr At small values ofr,
phase | where only the isotropic and highly ordered nematic pHase
w o8 phase are stable, the order parameter is constant in the coexistence

separation] region; then it grows withe, Fig. 3a). In weakly ordered

i isotropic 1 nematic phasé, which is stable at intermediate valuesof

0.4 -Uase . the order parameter can vary within a small enough interval,
v Fig. 3b). Gradual variation of the order parameter becomes

0.0l . . . . . L . possible at high fractions of charged groups, exceeding the
0.0 01 0.2 0.3 0.4 0.5 critical value, Fig. &) and 3d).

¢

FIG. 2. Phase diagram of the solution of rodlike molecules in
variables: polymer volume fractionp and the parametew In the present paper the theory of liquid-crystalline order-
=4me”/(aeksT) at a fixed fraction of charged groups ing in the solution of charged rodlike molecules is proposed.

We studied polyelectrolyte regime of the solution, i.e., when

caused by smaller losses of orientational entropy of longethe parametew is small enoughe?/(aekgT)<1. Assuming
rods which is in accordance with the condition for the spin-that in this regime counterion condensation does not occur
odal; at the spinodal there should be 1/m'2. The phase and that charge fluctuations are small, we developed a theory
diagram for short enough rod molecules can exhibit phasef the Debye-Huakel type to take into account rods-rods,
separation and two different nematic phases within the wholeods-counterions, and counterions-counterions many-body
range of values of-, Fig. 1(c). Coulomb interactions. The energy of such interactions was

The parametew=4me?/(aekgT) strongly depends on calculated for two states of the solutiof) disordered and
the dielectric constant of the solution and the variatiore of (ii) completely orderedthe order parameter is equal to
can induce phase transitions. The phase diagram in variablesity). We found that for all the analyzed regimes the many-
¢ —w at fixed values of the degree of ionizatierand aspect body Coulomb interactions of similarly charged rods are
ratio L/a is presented in Fig. 2. One can see that there is #ractive independent of their mutual orientation. The Cou-
wide enough range of polymer volume fractiopsvhere the  lomb energy of the completely ordered state was shown to be
order-disorder transition occurs at the increase of the dieledewer than the Coulomb energy of the disordered state. It
tric constant(decrease oWw). means that electrostatic attraction of the molecules promotes

In contrast to athermal and lyotropic liquid-crystalline so- liquid-crystalline ordering in addition to the usual excluded
lutions [6,8], where both concentration and temperaturevolume driven mechanism. As a result, the existence of two
variation can result in phase separation with the abrupt jumpematic phases differing in the value of the order parameter
of the order parameter, for polyelectrolyte solution the variais predicted. We found that the weaker ordered nematic

V. CONCLUSIONS
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APPENDIX A: CORRELATION FREE ENERGY

grals in Eq.(12) is substitution of continual integration over
the wave vectoq in the fluctuating free energ§F, Eq. (10),
by discrete summation over wave numbels @
=2m{ky /Ly Ky Ly KL}, Ke.Ky K,=0,+1,%2, ...,
where L, , , are linear dimensions of the systeufi, L, .,

5F(¢,§)=iz fkf—k+l//kl// ST
kgT 2V % TP mpty g2 ko Skle
FIG. 4. Schematic representation of the force lines of the elec- (A1)

tric field in the isotropic state of the solution of rodlike molecules.

The gray lines depict the electric field of the selected molecule. This k2 Kk? K?
. . . . . 2 2 X y 4
field has cylindrical symmetry. The superposition of the electric g=(2m) St 5T
fields of all the rod molecules and counterions, except the field of x Ly L3

the selected molecule, is depicted by the black lines. It has spherical _ ) ) o
symmetry.E, and E, are the intensities of the fields making the Then the expressions in logarithms of E@1) are infinite
angle § with respect to each other. products of integrals over variabl@g and &, . Diagonaliza-

) N ) ] tion of the square form, EqA1), can be done via the fol-
phase is stabilized by Coulomb interactions already at VelYowing variable substitution:

small polymer concentrations. This effect is not connected

with the fluctuation mechanisi@at least for small concentra- _ 2pl

tions). It is a consequence of the “competition” betweéh =&t hi——,

intrinsic cylindrical symmetry of electric field of single rod- 7pl +0j

like molecules andii) spherical symmetry of electric fields _

of all rod molecules and counterioesxcept the field of the oF(yé) 1 1 .
selected molecu)en isotropic phase of the solution, Fig. 4. kB—T: oV ; bk m+ ol +qE

In dilute solutions the Debye screening length of counteri-

ons,rp=1/\17p, is large and interactions between rod mol- o
ecules are long range. Let us select one molecule in the so- + &€k
lution, Fig. 4. The force lines of the electric field, obtained

by superposition of the electric fields of all rods and counte-

rions except for the selected molecule, are drawn in blackUsing the well known result for the Gaussian integral

This field has spherical symmetry because all rod molecules

in isotropic phase of the solution are oriented in an arbitrary fx dx exp(— Bx2) = \/E (A3)
Cw B’

and integrating the exponents owgyf andgk, we obtain

|
—t+ (A2)

Ok

way. Gray lines depict the cylindrical field of the selected
molecule. It is well knowr]28], that the energy of the elec-
tric field per unit of volume is proportional to the square of
the total intensity of the fieldUy~ (E;+ E,)2. Therefore,

this energy depends on the mutual orientation of the force 1 1

lines, Ug~E2+E3+ 2E,E,cos6, and the minimum of the AF ol 7o

energy can be attained at the antiparallel orientation of the — e H Pl TP

lines (at #= 7). Because charges of rigid rod molecule can- kgT K 1 7l 1 |
not change configuration, the orientation of the molecules is mpt, + ol + G2 ;“L q_ﬁ

the only way to minimize the free energy.

Therefore, we arrive at a fundamental conclusion: long-
L . . . . 1 1+ m’Ttk
range electrostatic interactions in very dilute solutions of =_ E In 1+7-p|—2
rigid rods should induce a very weakly ordered nematic 2% (o
phase. In other words, isotropic solutions of this type are
intrinsically unstable with respect to orientational ordering. \ 1+mst
Y P g :=—f | 14 7pl =), (A4)
2) (2m) q
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APPENDIX B: DISORDERED STATE

The calculation of the correlation free energy, ELf), in
the disordered statpwith structural function(18)] can be

PHYSICAL REVIEW E 66, 011802 (2002

1. Large number of charged units per chainm7z>1

In this case the second term in E&5) is small and can
be neglected. Also, the asymptotic form of the functigrat

performed via integration by parts over the dimensionlesy>1, ty~/y, can be used

variabley=qL, 0<y<w, dq=4mq?dq=4my%dy/L?,

©

3

1+ mTty)

1+ 7plL? 5
y

y
~ kgTV (21)2L3 ?In

0

B 7'p|L2foc 'mTy3t§—2y2(1+ mrty)

3 Jo y2+plL?(1+mrt,)
—1'p|L2JO dy(1+m7ty) |, (BY)
2 (v2 sirf(2)
tyz—f dz ,
yJo z°

wheret§ is the derivative of the functioty, . Using the rela-
tion

ty . 4 sirt(y/2)

we represent EqB1) as
amr 1 J’wd
3 3)0Y

><4stin2(y/2) +7plL(1+mrt,)(2+3m7t,) |
y2+ plL?(1+ mrt,)

7pl

ya
dis (277)2L

(B3)

The contribution of electrostatic interactions to the chemical

potential of the solution can be found from EG6),

I F4is p72|2L ® (1+ m7'ty)2
Apgis= == /

dp (2m)?Jo yy2+7'p|L2(1+mTty).
(B4)

Combining Egs.(B3) and (B4) one can obtain the corre-

172p  1%p?ra (= z+ar
APais™~ 12ma 3(2m)2Jo Al
& 2+ T(Z+ )
(B6)
One can distinguish two regimes dependingl pa?/ 7
3 | 4/3_5/3 [ a2
B et dea®
I 72p 54723 gl
ApdiS’V_ 127Ta_ 1 a2
E('pﬂs’z at >1.

(B7)

The first regime corresponds to the case when the distance
between charged groups of the molecules a/ 7, is smaller
than the Debye screening length of counteriong,
=1\I7p, A%r3=1pa®/r<1. In the considered limit of the
large number of charged groupsr>1, andl~a this re-
gime is realized at small enough polymer volume fractions,
a®p<r. The linear term in Eq(B7) gives main contribution
to pressure atpa?/r<1 in comparison with the upper term
in the curly bracket. From physical viewpoint it means that
interchain attraction dominates over the chains-counterions
attraction and the structure of the molecule determines the
interaction law.

The second regime in EGB7) corresponds to small De-
bye screening lengthy, rp<<A, at high concentrations;
<a®p<1. In this case the structure of interpenetrating
chains does not play a role and the main contribution to the
osmotic pressure has the same form as for pointlike mol-
ecules(lower term in the curly brackgt

2. Small number of charged units per chainmz<1

For the considered rodlike chains with well defined shape,
m>1, the conditiont<1/m means vanishing values of
7—0. In this limit the third term in Eq(B5) gives the domi-
nant contribution to the pressure at finite values of the poly-
mer concentratiom:

1
Apgis™~— E('PT)S/Z- (B8)

sponding contribution to the osmotic pressure of the solution

in the following form:

Apgis= A pgisp — Fuis

I72p  17%p (= Siré(y/2)
=— +—f dy
1278 37%alo ~ y?+7pIL¥(1+mrt,)
1272p2L (= (1+mrt,)
- J dy— — . (B5)
3(2m)=Jo " y“+ 1plL(1+mrty)

Now let us consider two limiting cases.

Obviously, this result coincides with the corresponding pres-
sure of pointlike charges of density because the molecular
structure does not play a role in this limit.

Comparison of Eqs(B7) and (B8) enables us to choose
the contribution of charge interactions to pressure in the fol-
lowing form:

(Ip7)¥2

247

(B9)

which unifies both limits ofr and p. We will use in the
following this interpolation form for the description of

011802-9
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liquid-crystalline transitions. The corresponding free energywhereé~ms>1. Depending omw one can distinguish two
and chemical potential in this approximation take the form regimes. Atw< &2 the first integral in the square brackets of
Eq. (C3) can be written as the sum of two terms,

I 72p (Ip7)%?
e 2,23\ _ _
dytyn| 1+omr—
0

12 (= sirt(y/2) y
Clz;JO dyln(Y)T_ln(’”')“O-lz- W12 wmrt, £ t§
~f dytyn 5 +wm7'f dy—
0 y wl/4§l/2 y2

|7_2 ) . (| 7_)3/2p1/2
Apais~— 75— [In(pla 7m®)—Cy+1]- . o e 1
(B10) NEn(me)—'— 0 yt/in )7 +0 w412
The first term inFy;s can be derived from Eq16) in the (C9

limit m7>1, if we sett,~x/y in the logarithmic term. .
and the second integral takes the form

APPENDIX C: COMPLETELY ORDERED STATE ® w & w
_ . ) f dylin 1+— =Jw| m—2 arctan—| — £1In 1+—
Integration of Eq.{16) with the structural function of the 3 Jo §
completely ordered state, ECR0O), over the angle between w
vectorsu andq results in =O(— at w<&. (Ch
3
]:md:wadyyz wm The other regimew> &2, is analyzed in a similar manner.
(2m)%L3Jo 2 The result in the main order of magnitude can be presented
as
1+mt, 1+mt,
_ 1+LUT In 1+wT ) &}—ord%_ 1
Jw 2mL3
Sir?
ty: iy), w=|7pL2/4. (C1) mT[In(4me)+Cz]+~-~ at (1)<§2
y mT[|n(4me)+C2]+2\/;+"‘ at w>¢2,
It is worthwhile first to calculate the derivative &4 with (C6)
respect to the parameter, ) .
_c|” I P
0Fsrg 4 " 1+mt, C,= Wfo dytyln( 4y2) 1.69.
=— f dy(1+mrty)In| 1+ 0 ———
Jw (27T)ZL3 0 y2
(C2 2. Small number of charged units per chainmz<<1

_ _ In this case Eq(C2) takes the form
1. Large number of charged units per chain,m7=>1

It is clear that the completely ordered state of the solution 9T ord ~— focdym 142 = ﬂ (C7)
cannot be attained at very low polymer concentrations. Jw m?L3Jo y? L3
Therefore, we confine ourselves to consideration of the case )
om7>1. It means that for the polyelectrolyte reginte;a, Comparing Eqs(C6) and(C7) one can choose the value

the polymer volume fractiors~ pa® should be larger than ©Of 7o/ dw at w>¢? as the interpolation form covering all
1/(m372), ¢>1/(m372). In the limit of the large number of the considered limits. In this approximation the contribution
charged units per chaimr> 1, such an assumption does not °f Coulomb interactions to the free energy, chemical poten-
reduce the generality of our approach and covers a very widal and osmotic pressure of the completely ordered state of
concentration range including even the dilute regimethe solution have the form

1/(m37?) < ¢p< ¢* ~1/m?. The derivative in Eq(C2) can be 172p (1p7)%2
written as Ford™— %[In(plazrzm3)+cz— -
dFord 1 ff ty 2 32,112
~— m7 | dytin{ 1+ omr— |7 (Im)"p
Jw w23 oYY y? AMord“‘%['n(szszs)“‘Cz]_T,
* w 172p  (Ip7)3?
+ [ dyln| 1+—]], (C3 ~o
f e ( y? APord™ " gra ™ 24m €8
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