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Rodlike polyelectrolyte solutions: Effect of the many-body Coulomb attraction of similarly charged
molecules favoring weak nematic ordering at very small polymer concentration

Igor I. Potemkin,1,* Roman E. Limberger,1 Alexander N. Kudlay,2 and Alexei R. Khokhlov1
1Physics Department, Moscow State University, Moscow 117234, Russia
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The correlation free energy of the many-body Coulomb interactions in the solution of rodlike polyelectro-
lytes with counterions is calculated. For this purpose a theory of the Debye-Hu¨ckel type, based on the density
functional approach, is developed. We have shown that for all the analyzed regimes electrostatic interactions of
similarly charged rods are attractive independent of their mutual orientation. Coexistence of weakly and highly
ordered nematic phases at intermediate degrees of ionization of the molecules is predicted. It is shown that the
electrostatic attractive forces favor liquid-crystalline ordering and stabilize a weakly ordered nematic phase at
very small polymer concentrations. In other words, isotropic solutions of charged rods are in many cases
intrinsically unstable with respect to orientational ordering.
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I. INTRODUCTION

The basic principle, which underlies liquid-crystalline o
dering in solutions of neutral rodlike molecules, was e
pounded by Onsager more than half a century ago@1#. Since
that time deep understanding of the liquid-crystalline ph
in the solutions of rodlike polymers@2–4# and of molecules
with various flexibility mechanisms@5–8# has been
achieved. Studies of nematic ordering in the solutions
rigid-rod polyelectrolytes~including biological objects, such
as DNA, tobacco mosaic viruses, etc.! have been started
more than two decades ago@9–20#. However, in contrast to
neutral solutions, in the field of polyelectrolytes there is
very wide spectrum of theoretical models and predictio
Most of the approaches were based on the consideratio
only pairwise Coulomb interactions of the chains in the s
ond virial approximation@10,11,13,18#. It is well known
@21#, that the integrals in the two-ion term in the seco
virial expansion for the unscreened interactions are div
gent. Therefore, this approximation can be applicable if
least two conditions are assumed:~i! two macroions interac
via the screened Debye-Hu¨ckel potential@10,11,13,18# and
~ii ! the screening radius~the Debye radius of low-molecula
ions! is smaller than the distance between the macroions.
latter condition can be achieved at high salt concentrati
~compared to the concentration of counterions! @10,18#. The
choice of the virial approach excludes correlation attract
of low-molecular ions from consideration and postula
electrostatic repulsion between two similarly charged mac
ions. One of the main predictions of the virial theories is t
increase of the net second virial coefficient due to elec
static interactions. This can result in the narrowing of t
phase separation region and the second orientational tr
tion to a highly ordered nematic phase@10,18#.

Another model, based on the bare potential energy c
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structed from the Debye-Hu¨ckel potential, was proposed i
Ref. @20#. Here the effective potential energy between tw
segments of different polyelectrolyte rods was calculated
the Maier-Saupe approximation@22#. This energy was shown
to be also repulsive and anisotropic, favoring perpendicu
orientation between the rods.

A recent attempt to account for the effect of the man
body correlations of charged rods on the isotropic-nem
transition was undertaken in Ref.@17#. The model of weakly
interacting rods immersed in oppositely charged nonfluctu
ing medium was developed. The interaction potential
tween the rods was chosen in the Debye-Hu¨ckel form. The
resulting correlation free energy was found to be positive a
reducible to the virial electrostatic energy under certain c
ditions.

The goal of this paper is to develop the consistent the
of liquid-crystalline ordering in solutions of rodlike polyelec
trolytes which properly considers the many-body Coulom
interactions of charged groups~both macro and counterions!,
as well as the effect of the translational motion of counte
ons. We will consider the polyelectrolyte regime of thesalt-
free solution with freely floating monovalentcounterions at
the high temperature~or high dielectric constant!, i.e., the
counterion condensation due to the Manning mechan
@23,24# and ion pair formation@25–27# will not be taken into
account in the present theory. The main difference of
model is thatunscreenedCoulomb interactions among th
macro and counterions will be considered as a starting p
of the theory. It means that this approximation cannot
reduced to the virial expansion~as in the consideration with
the screened potential@17#!. Assuming that charge fluctua
tions in the solution are small, we will elaborate a Deby
Hückel-like theory on the basis of the Gaussian approxim
tion for the density functional. Charge fluctuations of bo
rods and counterions will be taken into account. The gen
expression for the electrostatic correlation energy of the
lution with the arbitrary orientational distribution function o
rods will be derived via integration of the statistical weig
over the density fluctuations. The explicit forms of this e
ergy will be obtained for the two limiting states of the sol
ic
©2002 The American Physical Society02-1
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tion: the isotropic~disordered! and completely ordered~par-
allel orientation of the molecules! states. Various phas
diagrams for liquid-crystalline ordering will be constructe

The most important predictions of our model can be su
marized as follows.

~1! The many-body Coulomb interactions of similar
charged rods areattractive independently of the mutual ori
entation of rods. This effect is valid for semidilute and dilu
regimes.

~2! Electrostatic attraction favors liquid-crystalline orde
ing. It stabilizes a weakly ordered nematic phase at v
small polymer concentrations. Coexistence of weakly a
highly ordered nematic phases is possible.

~3! Translational motion of counterions narrows the pha
separation region of the coexisting isotropic and orde
nematic phases.

II. ELECTROSTATIC INTERACTIONS IN THE
SOLUTIONS OF RODLIKE MOLECULES

Let us consider a solution of charged rodlike molecu
and their low-molecular mobile counterions. Let us denote
L and m the length and the number of monomer units
each molecule, respectively,L5am wherea is linear size of
monomer units. Monomer unit density in a solution ofN rods
can be written as

r~x!5m(
i 51

N E
2L/2

L/2 dsi

L
d~x2n̂isi2Ri !, ~1!

wherex is the current spatial coordinate;si and n̂i are the
current longitudinal length and the unit vector directed alo
the axis ofi th cylinder, respectively;Ri is the coordinate of
its center. The total number of monomer units in the syst
can be found by integration ofr(x) over the whole volume
of the system,V,

E
V
d3xr~x!5mN. ~2!

Fourier component for the density~1! takes the form

rq5m(
i 51

N E
2L/2

L/2 dsi

L
exp@2 iq•~ n̂isi1Ri !#

52m(
i 51

N
sin~q•n̂iL/2!

q•n̂iL
exp~2 iq•Ri !, ~3!

where q is the wave vector. Let us denote asf (û,n̂i) an
orientational distribution function of the molecules. Hereû is
unit vector of preferential orientation of the molecules~di-
rector! and the function f is normalized as follows:
*dn̂i f (û,n̂i)51. The contribution to the partition function o
the solution coming from the density fluctuations of t
monomer units of rodscq5rq2(2p)3rd(q) with respect to
the average valuer5mN/V can be written as follows:
01180
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Zstr~c!5
1

N! E )
i 51

N

dRidn̂i f ~ û,n̂i !

3d S cq22m(
i 51

N
sin~q•n̂iL/2!

q•n̂iL
exp~2 iq•Ri !

1~2p!3rd~q!D . ~4!

Introducing the conjugate fieldw, the partition function~4!
can be presented as

Zstr~c!5
1

N! E )
i 51

N

dRidn̂i f ~ û,n̂i !

3E Dw3expH i E dq

~2p!3
w2qcq2 i

3E dq

~2p!3
w2qS 2m(

i 51

N
sin~q•n̂iL/2!

q•n̂iL

3exp~2 iq•Ri !2~2p!3rd~q!D J , ~5!

whereDw[)qdwq is the product of differentials. Expandin
the exponent in Eq.~5! into the series in powers of the sma
density fluctuations,rq2(2p)3rd(q), up to square terms
and integrating over the coordinatesRi and the orientation
vectorsn̂i , one can obtain

Zstr~c!5
VN

N! E DwexpS i E dq

~2p!3
cqw2qD

3H 12
mr

2 E dq

~2p!3
tqwqw2q1 . . . J ,

tq5E dn̂f ~ û,n̂!
4 sin2~q•n̂L/2!

~q•n̂!2L2
. ~6!

Reconstructing exponent in Eq.~6! using Gaussian approxi
mation, 12w2'exp(2w2), we find

Zstr~c!5const
VN

N!
expS 2

1

2mrE dq

~2p!3
tq

21cqc2qD
~7!

after integration over the fieldw. Here the constant const i
independent of the density fluctuationsc.

Let us consider the case of monovalent charged group
the rods and their mobile counterions~possessing elementar
charges1e and2e, respectively! without salt: counterions
are the only mobile low-molecular ions in the solution. L
us denote asD the distance between charged groups of
rod; thent5a/D, 0,t,1, is the fraction of the charged
groups and their density is defined astr(x). Counterions
2-2
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provide macroscopic electrical neutrality of the solution a
their density c(x) is subjected to the conditioncq50
5*dxc(x)5t*dxr(x)5trq50.

Local violation of electrical neutrality in the solution con
tributes to the Coulomb energy as

dFCoul~c,j!

kBT
5

l

2E dq

~2p!3

~tcq2jq!~tc2q2j2q!

q2
,

~8!

where the parameterl 54p l B is proportional to the Bjerrum
length l B5e2/(ekBT); e is the dielectric constant of the so
lution; andjq is the Fourier component of the density flu
tuations of counterionsjq5cq2(2p)3d(q)tr, jq5050.

To calculate the contribution of electrostatic interactio
to the free energy of the solution we follow the Deby
Hückel theory@21# and consider small density fluctuations
‘‘ideal gas’’ of rod molecules with counterions. Free ener
functional of such a system can be written as a sum of th
terms

F~c,j!5kBTE dxc~x!ln@c~x!#2kBT ln Zstr~c!

1dFCoul~c,j!, ~9!

where the first term is the energy of translational motion
counterions, the second term is the structural contribution
rodlike molecules, see Eq.~7!, and the third term is the Cou
lomb energy, Eq.~8!. Expansion of the first term in Eq.~9!
into the series in powers of the variablej up to the quadratic
term enables us to write Eq.~9! in the following form:

F~c,j!5kBTtmN ln~tr!1kBTN ln~r/m!1dF~c,j!,

dF~c,j!

kBT
5

1

2E dq

~2p!3 F jqj2q

tr
1

cqc2q

mrtq
1

l

q2
utcq2jqu2G .

~10!

The first two terms inF correspond to the energies of tran
lational motion of counterions and rod molecules, resp
tively, in spatially homogeneous solution whiledF describes
small density fluctuations. The contribution of fluctuatin
charges to the total free energy of the solutionDFel can be
found following a standard way:

DFel52kBTS ln E DcDj expH 2
dF~c,j!

kBT J
2 ln E DcDjexpH 2

dF~c,j!

kBT U l 50J D , ~11!

whereDcDj[)qdcqdjq is a product of differentials. Cal
culation of Gaussian integrals in Eq.~11! is done in Appen-
dix A. The result is

DFel5kBT
V

2E dq

~2p!3
lnS 11tr l

11mttq

q2 D . ~12!
01180
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This expression diverges atq→` because self-energies o
counterions and rodlike molecules contribute toDFel ac-
cording to the form of the Coulomb energy, Eq.~8!. There-
fore, to derive the electrostatic energy of interactions of
macromolecules with each other and the counterions
have to subtract the corresponding self-energies from
~12!. The total self-energy of the rodlike moleculesDFel

sr is
the sum of the energies of each molecule,

DFel
sr5kBT(

i 51

N E dn̂i f ~ û,n̂i !

3
l

2E dq

~2p!3

t2vq~ n̂i !v2q~ n̂i !

q2
,

vq~ni !52m
sin~q•n̂iL/2!

q•n̂iL
exp~2 iq•Ri !, ~13!

wherevq(n̂i) is the Fourier component of the density ofi th

molecule@see Eq.~3!, whererq5( ivq(n̂i)#. The result of
calculations in Eq.~13! can be written as

DFel
sr5kBT

Nm2t2l

2 E dq

~2p!3

tq

q2
. ~14!

Correspondingly, the self-energy ofNmt counterions has the
form

DFel
sc5kBT

Nmt l

2 E dq

~2p!3

1

q2
. ~15!

Correlation electrostatic energy of fluctuating charges, i
the energy of rods-rods, rods-counterions, and counterio
counterions many-body Coulomb interactions, takes the fo

DFcorr5DFel2DFel
sr2DFel

sc

5kBT
V

2E dq

~2p!3 F lnS 11tr l
11mttq

q2 D
2tr l

11mttq

q2 G . ~16!

To check the validity of our approach let us reprodu
first the classical result of the Debye-Hu¨ckel theory for ideal
plasma with pointlike positive and negative charges hav
valencyz15tm andz251, respectively. For this purpose w
have to consider the limitL→0 in Eq. ~6! leading totq51.
For this limit the integral~16! is calculated exactly and ha
the form

DFcorr

V
52

kBT

12p
@ l tr~11tm!#3/2

52kBT
2p1/2

3 F e2

ekBT
~c1z1

21c2z2
2!G3/2

,

2-3
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c15
r

m
, c25rt, ~17!

which coincides with the classical result@21#.
The opposite limit of rods with well defined shape can

obtained atL→`. We will analyze two important cases:~i!
disordered state of the solution when all orientations of
molecules are equally probable and~ii ! completely ordered
state when all molecules are oriented in parallel to e
other.

A. Disordered state

In disordered state of the solution the distribution functi
f (û,n̂) in Eq. ~6! is constant, namelyf (û,n̂)51/(4p), thus
the structural function takes the form

tq5
1

qLE2qL/2

qL/2

dx
sin2~x!

x2
. ~18!

The calculation of the free energy~16! with the structural
function ~18! as well as the corresponding contributions
the osmotic pressure and the chemical potential of the s
tion is presented in Appendix B@see Eqs.~B9!, ~B10!#. In-
terpolation form of the contribution of Coulomb interactio
to the osmotic pressure can be written as

Dpdis'2
l t2r

12pa
2

~ lrt!3/2

24p
. ~19!

One can see that electrostatic interactions give a nega
contribution to the osmotic pressure of the solution for
analyzed regimes@see Eqs.~B7!, ~B8!#. It means that the
many-body Coulomb interaction of fluctuating charg
favors the attraction of the molecules:Dpdis decreases with
the increase of polymer concentration.

Let us estimate the range of applicability of the deriv
expression. The main limitation of our approach is the
sumption of small density fluctuations: electrostatic inter
tions only weakly perturb the homogeneous densities of r
and counterions. It means that the correlation free ene
should be smaller than the energy of translational motion
rods and counterions which results in

l t/a,1 at lra2/t!1 ~mt@1!,

tr l 3,1 at lra2/t@1 ~mt@1!,

t~mt!2r l 3,1 at mt!1.

In the considered polyelectrolyte regime,l<a, these in-
equalities are always valid (t<1).

B. Completely ordered state

In the completely ordered state of the solution, when
molecules are oriented in parallel to each other, the distr
tion function f (û,n̂) in Eq. ~6! has the formf (û,n̂)5d(n̂
2û) and
01180
e

h

u-

ve
l

-
-
s
y
f

ll
u-

tq54
sin2~q•ûL/2!

~q•ûL !2
. ~20!

The calculation of the correlation free energy with this fun
tion as well as the corresponding chemical potential and
osmotic pressure is presented in Appendix C. The pres
takes the form

Dpord'2
l t2r

8pa
2

~ lrt!3/2

24p
. ~21!

This contribution is also negative for all analyzed r
gimes. This means that independently of the molecule or
tation many-body charge interactions stimulate attraction
similarly charged molecules. The free energy of the co
pletely ordered state, Eq.~C8!, is smaller than the free en
ergy of the disordered state, Eq.~B10!: the larger the argu-
ment of logarithm~length of rods!, the larger the difference
between the energies. If we assume that the free energy
function of molecular orientation is monotonous, we c
conclude that Coulomb attractionfavors orderingof the mol-
ecules.

The physical reason of Coulomb attraction of the m
ecules in the completely ordered state at small polymer c
centrations is the following. A system of infinitely long pa
allel rods has cylindrical symmetry and symmetry of elect
field of each individual molecule is close to cylindrical one
their volume fractionf is small,f!1. Then the total Cou-
lomb energy ofN rods is approximately equal to the sum
energies of individual molecules. It is well known that th
energy of a cylinder logarithmically diverges and depends
the outer radiusR, which is determined by the volume frac
tion f, R5a/f1/2. Neglecting charge fluctuations, the Co
lomb energy in main approximation~with respect to small
volume fractionf) takes the form

Ucyl

kBT
5N

~emt!2

kBTL
ln~R/a!5Nm

l t2

8pa
ln~1/f!. ~22!

The calculation of the osmotic pressure with this formu
gives exactly the same expression as the first term in
~21!. Therefore, the driving force of Coulomb attraction
small concentrations is the tendency to reduce the energ
the cylinder by decreasing the volume fraction. Note that
alternative decrease of the Coulomb energy of the cylin
via the Manning mechanism of counterion condensat
@23,24# becomes possible only atl .a.

III. FREE ENERGIES OF ISOTROPIC
AND NEMATIC PHASES

To describe nonCoulomb interactions at liquid-crystalli
ordering in the solution of rodlike molecules let us use t
Onsager approach@1# with the orientational distribution
function

f ~ û,n̂!5
a

4p sinh~a!
cosh~aû•n̂!, E dn̂f ~ û,n̂!51,

~23!
2-4
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wherea is the variation parameter, 0<a,`; a50 anda
.0 correspond to isotropic~disordered! and nematic phase
of the solution, respectively. Complete nematic ordering
attained in the limita→` when f (û,n̂)→d(û2n̂). The On-
sager approach, developed initially for neutral rodlike m
ecules, is based on the consideration of the two contribut
to the free energy characterizing different phases: entro
losses of rods because of their orientation and pairwise
cluded volume repulsion of the molecules which
orientation-dependent,

FOnsager~a!5
r

mE dn̂f ~ û,n̂!ln@4p f ~ û,n̂!#

1
r2

2m2E dn̂1dn̂2f ~ û,n̂1! f ~ û,n̂2!B~g!

5
r

m H ln@a coth~a!#211
arcsin@ tanh~a!#

sinh~a! J
12r2a3

I 2~2a!

sinh~a!2
,FOnsager~0!5r2a3,

~24!

whereB(g)52L2asin(g) is the second virial coefficient o
rods making an angleg with respect to each other;I 2 is the
Bessel function.

To describe Coulomb interactions of the molecules in
nematic phase, where the order parameter

S5E dn̂f ~ n̂,û!
3~ n̂•û!221

2
512

3

a2 S a cosh~a!

sinh~a!
21D

~25!

can be less than unity~parametera has some finite value!,
we have to calculate the correlation free energy, Eq.~16!,
with the orientational distribution function, Eq.~23!.

A. Instability of disordered state toward nematic ordering
at small polymer concentrations

In this section we will show that already at small polym
concentrations the isotropic phase becomes unstable wit
spect to weak orientation of the molecules. For this purp
let us calculate the spinodal of isotropic-nematic ordering
can be done using general approach@independently of par-
ticular choice of the trial function, Eq.~23!# which is based
on the expansion of the distribution functionf (û,n̂) of the
weakly ordered state into the series of Legendre polyno
als,

f ~ û,n̂!'
1

4p S 11
5S

2
@3~ û•n̂!221#1 . . . D , S!1.

~26!

We will consider in Eq.~26! the first two terms of the serie
due to weak orientation of the molecules. Then the struct
function can be presented in the following form:
01180
s

-
ns
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e
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tq
wo5tq1dtq , ~27!

dtq5
15

2
SS 3

~ û•q!2

q2
21D F 1

q2L2 S 12
sin~qL!

qL D2
tq

6 G ,

wheretq is the structural function of the disordered state, E
~18!. Expansion of the correlation free energy~16! with the
structural function of weakly ordered molecules,tq

wo , into
the series in powers ofdtq results in

Fwo5Fdis1dF, ~28!

dF52
1

4~2p!3E dûE
0

`

dqq2
~ lrm!2t4dtq

2

@q21 lrt~11mttq!#2
.

For the most interesting case of the large number of char
units on the chain,mt@1, we can use asymptotic forms o
the functionstq anddtq at qL@1 ~see Appendix B!. In this
limit the integral in Eq.~28! takes the form

dF52
5

24p

lrt2

a
S2. ~29!

Similarly, calculation of the orientational entropy of rod mo
ecules@first term in Eq.~24!# with distribution function~26!
gives

dForient5
5r

2m
S2. ~30!

Neglecting the contribution of excluded volume repulsion
rods at small polymer concentrations, which is proportio
to r2, we can write the excess energy of the weakly orde
state in the following form:

dFtot5dForient1dF5
5

2
rS 1

m
2

l t2

12paDS2. ~31!

Therefore, if the fraction of charged groups of rod molecu
t exceeds some certain value,t.A12pa/( lm), the isotropic
state of the solution becomes unstable even at very s
polymer concentrations: the longer the polymer chain,
smaller the threshold value oft.

B. Approximation for anisotropic Coulomb free energy

The calculation of the correlation free energy of Coulom
interactions for arbitrary values of the order parameterS (a)
can be given only numerically. To overcome computatio
difficulties and to get qualitatively correct results we u
simple interpolation form assuming monotonous depende
of the correlation free energy ona,

Fcorr~a!5
1

11a
Fdis1

a

11a
Ford . ~32!

It decreases fromFdis at a50 up to the valueFord at a
5`.
2-5
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FIG. 1. Phase diagrams of the solution of the rigid-rod polyelectrolyte in variables: polymer volume fractionf and the fraction of
charged groups of the rodst for different values of the aspect ratio of the molecules;L/a510 ~a!, L/a5100 ~b!, andL/a55 ~c!; w51.
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The resulting free energies of the isotropic (Fi) and nem-
atic (Fn) phases of the solution have the form

Fi5Fcorr~0!1FOnsager~0!1Ftr ,

Fn5Fcorr~a!1FOnsager~a!1Ftr , ~33!

Ftr5tr ln~tra3!1
r

m
lnS ra3

m D ,

whereFtr is the energy of the translational motion of cou
terions and rods. The chemical potentials (m i ,n) and osmotic
pressures (p i ,n) of various phases of the solution are deriv
following a standard way:

m i ,n5
]Fi ,n

]r
, p i ,n5r2

]

]r S Fi ,n

r D . ~34!

Thus, the system described by the free energies~33! fa-
vors liquid-crystalline ordering due to excluded volume
pulsion of the molecules and their Coulomb attraction wh
losses in orientational entropy of the molecules counte
this ordering.

IV. RESULTS AND DISCUSSIONS

The analysis of the free energy~33! of nematic phase as
function of the parametera shows that at certain condition
this function may reveal two minima at finite values ofa. It
means that two nematic phases (I and II ) differing in the
value of the order parameter can be stable. To construc
phase diagram of such a solution we have to solve the se
the following equations:

m i~r0!5mn~r1!,
p i~r0!5pn~r1!,
]Fn~r1!

]a1
50,

m i~r0!5mn~r2!,
p i~r0!5pn~r2!,
]Fn~r2!

]a2
50,

mn~r1!5mn~r2!,
pn~r1!5pn~r2!,
]Fn~r1!

]a1
50,

]Fn~r2!

]a2
50,

~35!
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giving the binodals for isotropic/nematicI, isotropic/nematic
II , and nematicI /nematicII phases, respectively.

Phase diagrams of the solution in variables: polymer v
ume fractionf5ra3 and the fraction of charged groups o
the rodt are presented in Fig. 1 at various values of asp
ratio of rodlike molecule,L/a5m. Figure 1 depicts the dia
gram at L/a510. In accordance with the analysis of th
spinodal of the order-disorder transition, the isotropic ph
remains stable only below a certain value oft. Above this
value weakly ordered nematic phaseI appears already a
very small polymer concentrations. The width of the pha
separation region between these phases is very small a
not distinguishable at the length scale of the diagram.
contrast, the width of the phase separation region betw
the isotropic and highly ordered nematic phaseII is signifi-
cant. It narrows with the increase oft from the maximum
value att50 corresponding to neutral rod chains. Such b
havior is caused by the increase of a number of counter
with t: the contribution of translational motion of counter
ons, which is proportional tot, dominates over the Coulom
term ;t2 at small values oft. Phase separation is alway
accompanied by entropy losses of those counterions, w
are localized in denser phase to compensate its macrosc
charge. Therefore, the larger the number of counterions,
smaller should be the concentration jump at the phase s
ration.

Coexistence of two nematic phases at certain intermed
values of the degree of ionization of rod moleculest is the
result of two stabilizing factors: weakly ordered nema
phaseI and highly ordered nematic phaseII are stabilized by
Coulomb and excluded volume interactions, respectiv
When these two kinds of interactions become compara
~with the increase oft) the difference between the nemat
phases vanishes at the critical point.

The influence of the aspect ratio of rodlike molecules
phase behavior of the solution is demonstrated in Figs. 1~b!
and 1~c!. These figures correspond toL/a5100 andL/a
55, respectively. The increase of the length of the molecu
leads to expansion of the stability region of the nema
phase in both directions: its boundaries are shifted tow
smaller polymer volume fractionsf ~as for the case of neu
tral solutions! and smaller values oft @compare Figs. 1~a!
and 1~b!#. Formation of weakly ordered nematic phaseI at
smaller values oft ~weaker Coulomb attraction!, Fig. 1~b!, is
2-6



ge
in

as
o

f
b

is

le

o-
r
m
ia

om

ence

val,
es
the

er-
ed.
en

cur
eory
s,
ody
as

o
y-

u-
be

. It
otes
ed
two
eter
atic

in

RODLIKE POLYELECTROLYTE SOLUTIONS: EFFECT . . . PHYSICAL REVIEW E 66, 011802 ~2002!
caused by smaller losses of orientational entropy of lon
rods which is in accordance with the condition for the sp
odal; at the spinodal there should bet;1/m1/2. The phase
diagram for short enough rod molecules can exhibit ph
separation and two different nematic phases within the wh
range of values oft, Fig. 1~c!.

The parameterw54pe2/(aekBT) strongly depends on
the dielectric constant of the solution and the variation oe
can induce phase transitions. The phase diagram in varia
f2w at fixed values of the degree of ionizationt and aspect
ratio L/a is presented in Fig. 2. One can see that there
wide enough range of polymer volume fractionsf where the
order-disorder transition occurs at the increase of the die
tric constant~decrease ofw).

In contrast to athermal and lyotropic liquid-crystalline s
lutions @6,8#, where both concentration and temperatu
variation can result in phase separation with the abrupt ju
of the order parameter, for polyelectrolyte solution the var

FIG. 2. Phase diagram of the solution of rodlike molecules
variables: polymer volume fractionf and the parameterw
54pe2/(aekBT) at a fixed fraction of charged groupst.
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tion of the order parameter can be continuous, starting fr
a very small value. In Fig. 3 the order parameterS, Eq. ~25!,
is plotted as a function of polymer volume fractionf, at
different fractions of charged groupst and fixed values of
the aspect ratio and of parameterw. At small values oft,
where only the isotropic and highly ordered nematic phaseII
are stable, the order parameter is constant in the coexist
region; then it grows withf, Fig. 3~a!. In weakly ordered
nematic phaseI, which is stable at intermediate values oft,
the order parameter can vary within a small enough inter
Fig. 3~b!. Gradual variation of the order parameter becom
possible at high fractions of charged groups, exceeding
critical value, Fig. 3~c! and 3~d!.

V. CONCLUSIONS

In the present paper the theory of liquid-crystalline ord
ing in the solution of charged rodlike molecules is propos
We studied polyelectrolyte regime of the solution, i.e., wh
the parameterw is small enough,e2/(aekBT),1. Assuming
that in this regime counterion condensation does not oc
and that charge fluctuations are small, we developed a th
of the Debye-Hu¨ckel type to take into account rods-rod
rods-counterions, and counterions-counterions many-b
Coulomb interactions. The energy of such interactions w
calculated for two states of the solution:~i! disordered and
~ii ! completely ordered~the order parameter is equal t
unity!. We found that for all the analyzed regimes the man
body Coulomb interactions of similarly charged rods areat-
tractive independent of their mutual orientation. The Co
lomb energy of the completely ordered state was shown to
lower than the Coulomb energy of the disordered state
means that electrostatic attraction of the molecules prom
liquid-crystalline ordering in addition to the usual exclud
volume driven mechanism. As a result, the existence of
nematic phases differing in the value of the order param
is predicted. We found that the weaker ordered nem
se

s

FIG. 3. Order parameter of the nematic pha
S as a function of polymer volume fractionf at
different values of the volume fraction of charge
t: t50.1 ~a!, 0.4~b!, 0.632~c!, 0.8~d!. The hori-
zontal lines in~a! and ~b! correspond to coexist-
ence regions.
2-7
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phase is stabilized by Coulomb interactions already at v
small polymer concentrations. This effect is not connec
with the fluctuation mechanism~at least for small concentra
tions!. It is a consequence of the ‘‘competition’’ between~i!
intrinsic cylindrical symmetry of electric field of single rod
like molecules and~ii ! spherical symmetry of electric field
of all rod molecules and counterions~except the field of the
selected molecule! in isotropic phase of the solution, Fig. 4
In dilute solutions the Debye screening length of counte
ons,r D51/Al tr, is large and interactions between rod mo
ecules are long range. Let us select one molecule in the
lution, Fig. 4. The force lines of the electric field, obtain
by superposition of the electric fields of all rods and coun
rions except for the selected molecule, are drawn in bla
This field has spherical symmetry because all rod molec
in isotropic phase of the solution are oriented in an arbitr
way. Gray lines depict the cylindrical field of the select
molecule. It is well known@28#, that the energy of the elec
tric field per unit of volume is proportional to the square
the total intensity of the field,Uel;(E11E2)2. Therefore,
this energy depends on the mutual orientation of the fo
lines, Uel;E1

21E2
212E1E2cosu, and the minimum of the

energy can be attained at the antiparallel orientation of
lines ~at u5p). Because charges of rigid rod molecule ca
not change configuration, the orientation of the molecule
the only way to minimize the free energy.

Therefore, we arrive at a fundamental conclusion: lon
range electrostatic interactions in very dilute solutions
rigid rods should induce a very weakly ordered nema
phase. In other words, isotropic solutions of this type
intrinsically unstable with respect to orientational orderin
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APPENDIX A: CORRELATION FREE ENERGY

One of the possible ways to calculate the Gaussian i
grals in Eq.~11! is substitution of continual integration ove
the wave vectorq in the fluctuating free energydF, Eq.~10!,
by discrete summation over wave numbersk, q
52p$kx /Lx ,ky /Ly ,kz /Lz%, kx ,ky ,kz50,61,62, . . . ,
where Lx,y,z are linear dimensions of the system,LxLyLz
5V:

dF~c,j!

kBT
5

1

2V (
k

F jkj2k

tr
1

ckc2k

mrtk
1

l

qk
2

utck2jku2G ,

~A1!

qk
2[~2p!2S kx

2

L x
2

1
ky

2

L y
2

1
kz

2

L z
2D .

Then the expressions in logarithms of Eq.~11! are infinite
products of integrals over variablesck andjk . Diagonaliza-
tion of the square form, Eq.~A1!, can be done via the fol-
lowing variable substitution:

jk5 j̄k1ck

t2r l

tr l 1qk
2

,

dF~c,j̄ !

kBT
5

1

2V (
k

Fckc2kS 1

mrtk
1

t2l

tr l 1qk
2D

1 j̄kj̄2kS 1

tr
1

l

qk
2D G . ~A2!

Using the well known result for the Gaussian integral

E
2`

`

dx exp~2bx2!5Ap

b
, ~A3!

and integrating the exponents overck and j̄k , we obtain

DFel

kBT
52 ln )

k !
1

mrtk

1

tr

S 1

mrtk
1

t2l

tr l 1qk
2D S 1

tr
1

l

qk
2D

5
1

2 (
k

lnS 11tr l
11mttk

qk
2 D

5
V

2E dq

~2p!3
lnS 11tr l

11mttq

q2 D , ~A4!

where in the last equality we have returned from summat
to integration.
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APPENDIX B: DISORDERED STATE

The calculation of the correlation free energy, Eq.~16!, in
the disordered state@with structural function~18!# can be
performed via integration by parts over the dimensionl
variabley5qL, 0,y,`, dq54pq2dq54py2dy/L3,

Fdis5
DFcorr

kBTV
5

1

~2p!2L3 F y3

3
lnS 11tr lL 2

11mtty

y2 DU
0

`

2
tr lL 2

3 E
0

`

dy
mty3ty822y2~11mtty!

y21tr lL 2~11mtty!

2tr lL 2E
0

`

dy~11mtty!G , ~B1!

ty5
2

yE0

y/2

dz
sin2~z!

z2
,

wherety8 is the derivative of the functionty . Using the rela-
tion

ty852
ty

y
1

4 sin2~y/2!

y3
, ~B2!

we represent Eq.~B1! as

Fdis5
tr l

~2p!2L
Fpmt

3
2

1

3 E0

`

dy

3
4mt sin2~y/2!1tr lL 2~11mtty!~213mtty!

y21tr lL 2~11mtty!
G .

~B3!

The contribution of electrostatic interactions to the chemi
potential of the solution can be found from Eq.~16!,

Dmdis5
]Fdis

]r
52

rt2l 2L

~2p!2 E0

`

dy
~11mtty!2

y21tr lL 2~11mtty!
.

~B4!

Combining Eqs.~B3! and ~B4! one can obtain the corre
sponding contribution to the osmotic pressure of the solu
in the following form:

Dpdis5Dmdisr2Fdis

52
l t2r

12pa
1

l t2r

3p2a
E

0

`

dy
sin2~y/2!

y21tr lL 2~11mtty!

2
l 2t2r2L

3~2p!2E0

`

dy
~11mtty!

y21tr lL 2~11mtty!
. ~B5!

Now let us consider two limiting cases.
01180
s

l

n

1. Large number of charged units per chain,mtš1

In this case the second term in Eq.~B5! is small and can
be neglected. Also, the asymptotic form of the functionty at
y@1, ty'p/y, can be used

Dpdis'2
l t2r

12pa
2

l 2r2ta

3~2p!2E0

`

dz
z1p

z31
lra2

t
~z1p!

.

~B6!

One can distinguish two regimes depending onlra2/t:

Dpdis'2
l t2r

12pa
25

A3

54p2/3

~ lr!4/3t5/3

a1/3
at

lra2

t
!1

1

24p
~ lrt!3/2 at

lra2

t
@1.

~B7!

The first regime corresponds to the case when the dista
between charged groups of the molecule,D5a/t, is smaller
than the Debye screening length of counterions,r D

51/Al tr, D2/r D
2 5 lra2/t!1. In the considered limit of the

large number of charged groups,mt@1, and l;a this re-
gime is realized at small enough polymer volume fractio
a3r!t. The linear term in Eq.~B7! gives main contribution
to pressure atlra2/t!1 in comparison with the upper term
in the curly bracket. From physical viewpoint it means th
interchain attraction dominates over the chains-counteri
attraction and the structure of the molecule determines
interaction law.

The second regime in Eq.~B7! corresponds to small De
bye screening lengthr D , r D!D, at high concentrations,t
!a3r,1. In this case the structure of interpenetrati
chains does not play a role and the main contribution to
osmotic pressure has the same form as for pointlike m
ecules~lower term in the curly bracket!.

2. Small number of charged units per chain,mt™1

For the considered rodlike chains with well defined sha
m@1, the conditiont!1/m means vanishing values oft,
t→0. In this limit the third term in Eq.~B5! gives the domi-
nant contribution to the pressure at finite values of the po
mer concentrationr:

Dpdis'2
1

24p
~ lrt!3/2. ~B8!

Obviously, this result coincides with the corresponding pr
sure of pointlike charges of densitytr because the molecula
structure does not play a role in this limit.

Comparison of Eqs.~B7! and ~B8! enables us to choos
the contribution of charge interactions to pressure in the
lowing form:

Dpdis'2
l t2r

12pa
2

~ lrt!3/2

24p
, ~B9!

which unifies both limits oft and r. We will use in the
following this interpolation form for the description o
2-9
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liquid-crystalline transitions. The corresponding free ene
and chemical potential in this approximation take the for

Fdis'2
l t2r

12pa
@ ln~r la2t2m3!2C1#2

~ lrt!3/2

12p
,

C15
12

p E
0

`

dy ln~y!
sin2~y/2!

y2
2 ln~p!'0.12,

Dmdis'2
l t2

12pa
@ ln~r la2t2m3!2C111#2

~ l t!3/2r1/2

8p
.

~B10!

The first term inFdis can be derived from Eq.~16! in the
limit mt@1, if we setty'p/y in the logarithmic term.

APPENDIX C: COMPLETELY ORDERED STATE

Integration of Eq.~16! with the structural function of the
completely ordered state, Eq.~20!, over the angle betwee
vectorsû andq results in

Ford5
4

~2p!2L3E0

`

dyy2Fv
11mtty

y2

2S 11v
11mtty

y2 D lnS 11v
11mtty

y2 D G ,

ty5
sin2~y!

y2
, v5 l trL2/4. ~C1!

It is worthwhile first to calculate the derivative ofFord with
respect to the parameterv,

]Ford

]v
52

4

~2p!2L3E0

`

dy~11mtty!lnS 11v
11mtty

y2 D .

~C2!

1. Large number of charged units per chain,mtš1

It is clear that the completely ordered state of the solut
cannot be attained at very low polymer concentratio
Therefore, we confine ourselves to consideration of the c
vmt@1. It means that for the polyelectrolyte regime,l;a,
the polymer volume fractionf;ra3 should be larger than
1/(m3t2), f@1/(m3t2). In the limit of the large number o
charged units per chain,mt@1, such an assumption does n
reduce the generality of our approach and covers a very w
concentration range including even the dilute regim
1/(m3t2)!f,f* ;1/m2. The derivative in Eq.~C2! can be
written as

]Ford

]v
'2

1

p2L3 FmtE
0

j

dytylnS 11vmt
ty

y2D
1E

j

`

dy lnS 11
v

y2D G , ~C3!
01180
y

n
.

se

de
,

wherej;Amt@1. Depending onv one can distinguish two
regimes. Atv,j2 the first integral in the square brackets
Eq. ~C3! can be written as the sum of two terms,

E
0

j

dytylnS 11vmt
ty

y2D
'E

0

v1/4j1/2

dytylnS vmtty

y2 D 1vmtE
v1/4j1/2

j

dy
ty
2

y2

'
p

2
ln~vmt!1E

0

`

dytylnS ty

y2D 1OS 1

v1/4j1/2D
~C4!

and the second integral takes the form

E
j

`

dy lnS 11
v

y2D 5AvS p22 arctan
j

Av
D 2j lnS 11

v

j2D
5OS v

j D at v,j2. ~C5!

The other regime,v.j2, is analyzed in a similar manne
The result in the main order of magnitude can be presen
as

]Ford

]v
'2

1

2pL3

3H mt@ ln~4vmt!1C2#1••• at v,j2

mt@ ln~4vmt!1C2#12Av1••• at v.j2,

~C6!

C25
2

pE0

`

dytylnS ty

4y2D '21.69.

2. Small number of charged units per chain,mt™1

In this case Eq.~C2! takes the form

]Ford

]v
'2

1

p2L3E0

`

dy lnS 11
v

y2D 52
Av

pL3
. ~C7!

Comparing Eqs.~C6! and ~C7! one can choose the valu
of ]Ford /]v at v.j2 as the interpolation form covering a
the considered limits. In this approximation the contributi
of Coulomb interactions to the free energy, chemical pot
tial and osmotic pressure of the completely ordered state
the solution have the form

Ford'2
l t2r

8pa
@ ln~r la2t2m3!1C221#2

~ lrt!3/2

12p
,

Dmord'2
l t2

8pa
@ ln~r la2t2m3!1C2#2

~ l t!3/2r1/2

8p
,

Dpord'2
l t2r

8pa
2

~ lrt!3/2

24p
. ~C8!
2-10
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